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Summary 
 
Seismic inversion requires two main operations relative to 

changes in the frequency spectrum. The first operation is 

deconvolution, used to increase the high frequency component 

of the observed seismic data and the second operation is 

integration of a reflectivity function to decrease the high 

frequencies and increase low frequencies of the seismic signal. 

The first operation is very unstable and non-unique for noisy 

seismic data. The second operation is very sable in high 

frequencies but has problems in low frequencies due to 

undefined low frequency data in seismic traces. By performing 

both of these operations simultaneously the operation will be 

stable in high frequency area and can be effectively stabilized 

in low frequency area based on an a priori acoustic impedance 

power spectrum and use Tikhonov and Arsenin‟s (1979) 

regularization technique. This approach can be applied to post-

stack and pre-stack seismic data. 

 

Introduction 
 
Seismic inversion is an important processing step in reservoir 

characterization that allows property prediction, away from the 

well control, as it may be used to compute acoustic impedance 

from poststack data, and p- and s-wave velocity, plus density, 

from prestack data. The results can be used, for instance, as 3D 

trends for petrophysical or facies modeling. Most seismic 

inversion techniques use two steps to calculate acoustic 

impedance. The first step is deconvolution and the second step 

is integration. Deconvolution operation is very unstable 

because it creates a set of unlimited-frequency reflection 

coefficients from a frequency-limited seismic trace. Many 

deconvolution and inversion technologies use sparse signal 

theory to perform these operations in a more robust way (Levy 

and Fullagar, 1981; Oldenburg et al., 1983; Debeye and Riel, 

1990; Robinson and Treitel, 2008). 

 

Our main idea is use deconvolution and integration in one 

calculation step within the frequency domain. In this case, the 

result is calculated acoustic impedance with a limited 

frequency spectrum. Furthermore, the calculation is more 

stable in the high frequency area and only has problems in low 

frequencies that may be effectively stabilized based on the 

Tikhonov and Arsenin (1979) regularization approach. 

 

According to Wiener (1949) deconvolution theory the best 

results are achieved by knowing the relationship of the power 

spectrum of noise, to the power spectrum of the result. The 

power spectrum of noise in many cases can be approximately 

calculated but the power spectrum of the expected result is 

usually unknown. This is the main reason to use Tikhonov and 

Arsenin‟s (1979) approach. Also, not only does the seismic 

signal include error but the wavelet also has its own 

independent error. This is the second reason to use the 

approach of Tikhonov and Arsenin. 

 

 The method requires only seismic data and wavelet as input; if 

the wavelet is unknown, it then uses a statistical wavelet. 

Results can be achieved very quickly because all calculations 

are done in the frequency domain, based on the Fast Fourier 

Transform (FFT) technique (Priezzhev, 2010a; Priezzhev, 

2010b).  

 

Method 
 

In the extreme case, in which the curve of acoustic impedance 

can be regarded as continuous and using well-known 

simplification for reflection coefficients  

ZZZZZr iiiii ln21)()( 11  
 then a set of reflection 

coefficients on the trace can be expressed as the differential for 

the logarithm of impedance dttZdtr )]([ln21)(   

(Oldenburg et al.,1983), where 
1, ii ZZ  are acoustic impedance 

values for the trace. For the frequency domain, this equation 

will be )]([ln2)( tZFiwwR  , where []F – is the Fourier 

transfer operator. Finally, in 1D forward modeling, the 

equation in the frequency domain based on the convolution 

equation )()()( wWwRwS    will be  
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iw
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where )(wS  is the  seismic trace spectrum, 

)(wR  is the spectrum of reflectivity coefficients, 

)(wW   is the spectrum of the wavelet,  

w  is the given frequency,  

iw - is the differentiation operator in the frequency domain and

1i . 

The well-known deconvolution equation for seismic trace is 

based on the Weiner deconvolution (1949): 
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where 

)]()([

)]()([
*

*

wRwRE

wNwNE  is the relation of noise power 

spectrums )(wN to the power spectrums of the expected result

)(wR .  
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One-step (deconvolution + integration) seismic inversion 

[]E  is mathematical expectation operator and * a mean 

complex conjugate. 

 

For deconvolution we can use a constant power spectrum for 

noise and constant power spectrum for signal because our 

result is reflection coefficients which have unlimited spectrum 

with more or less constant power. So usually in equation (2) 

the noise to signal power spectrum relation function is used 

like a constant that can prevent division to zero for some 

frequencies. 

In practice, the Weiner equation is not widely used because 

deconvolution based on sparse signal theory is much more 

stable and robust (Oldenburg et al.,1983; Debeye and Riel, 

1990; Robinson and Treitel, 2008). 

 

In order to invert equation (1) to calculate the spectrum of 

)(ln tZ  we can apply spectrum integration 

iw

1  to (2): 

 

)(|)(|

)(|)([|2
)]([ln

2

*

wMwW
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iw
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

               (3) 

 

where  

iw

1 is integration operator in the frequency domain, and

)(wM  
is a noise to signal power spectrum relation function 

based on Weiner theory. But in this case, the expected result is 

a logarithm of acoustic impedance; this function has not had a 

constant power spectrum and therefore we cannot use a 

constant as done in (2). According to Tikhonov and Arsenin 

(1979),   is a regularization coefficient and )(wM  is a 

regularization operator that must be defined according to prior 

information; for example, from well log acoustic impedance. If 

we do not have well data, it can be calculated according to 

Tikhonov and Arsenin (1979). In common cases, for smooth 

results it can be pwwM 2)(  , where p is a constant value > 

0. It is a mean minimization of the stabilization functional

dwtZFwM




2
)]([ln)(

 for the convolution equation. 

According Tikhonov and Arsenin (1979) this stabilization 

functional will be very effective if we have instability in high 

frequency area. In our case we have instability in low 

frequency area and we propose to use stabilization functional 

like
pw

wM
2

1
)(  . This functional is very effective to do 

stabilization in frequencies close to 0. 

 

Equation (3) can be used for poststack inversion. It allows 

calculation of the logarithm of acoustic impedance )(ln tZ  in 

one step for both deconvolution to calculate reflectivity and 

integration to calculate the logarithm of acoustic impedance; 

the result will be calculated using the exponent function
)(ln

0)( tZeZtZ  (Oldenburg et al.,1983), where 
0Z is the 

unknown average level of impedance. 

 

This inversion operator (3) and its spectrum (limited to a 

frequency band 10-70 Hz) shown on figure 1 looks very 

similar to the "coloured" inversion operator shown by 

Lancaster and Whitcombe (2000). Lancaster and Whitcombe 

derive this operator empirically by comparing an inversion 

results cube created by conventional technology and a source 

seismic cube.  

 

  
Figure 1. a) - Frequency domain inversion operator and its spectrum 

(limited for frequency band 10-70Hz) according to different Tikhonov 
and Arsenin‟s coefficients (0.01, red; 0.02, blue; 0.03, green). b) - 

„coloured‟ inversion operator and its spectrum (Lancaster and 

Whitcombe, 2000). 

 

If a Ricker wavelet is used 
)(

maxmax
maxmax)(2)(Ricker

wwww
ewwwww


 

 then the inversion operator corresponding to this wavelet 

according (3) will be the following: 

2/)(Ricker

12
)(

wawiw
wH




           

where  a is Tikhonov and Arsenin‟s coefficient.

   

 

Figure 2 shows an inversion operator and its spectrum for a 

Ricker wavelet. It is clear to see the low and high frequency 

parts of this operator. The low frequency part of operator will 

be stable for close to zero frequencies if use regularization 

operator  2/)( wawaM  . 

 

 

 
Figure 2. a) inversion operator for Ricker wavelet 30Hz and b) its 
spectrum (dB) according different Tikhonov and Arsenin‟s coefficients 

(0.01, red; 0.02, blue; 0.03, green). 

 

In this case if the wavelet function is unknown and cannot be 

calculated from seismic and well data, it can be extracted from 

seismic traces based on the following common simplifications 

b) 

a) 

a) b) 
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One-step (deconvolution + integration) seismic inversion 

(Claerbout, 1976; Baan and Pham, 2008; Robinson and Treitel, 

2008). The reflectivity function along the trace is a random 

uncorrelated function. In this case the wavelet autocorrelation 

and corresponded to it wavelet can be calculated directly from 

the seismic trace autocorrelation. In frequency domain it will 

be like the following: 

)]()([)]()([ ** wWwWEwSwSE     .             (4) 

Finally, based on Wiener deconvolution theory (1949), and 

Tikhonov and Arsenin (1979) regularization approach, the 

reflectivity spectrum estimation may be calculated as:  

)()]()([

)())]()([(
)(

*

2

1

*

wMwSwSE

wSwSwSE
wR




.                                      (5) 

Equation (5) may be used as a whitening deconvolution 

operator with unknown phase shift. Regularization operator 

can be used for frequency band filtering. Note that the 

whitening operation can only be used if the wavelet is 

unknown due to a lot of assumptions (Li et al., 2009).  

 

If combine equations (3) and (5) the whitening inversion will 

be 

 

)()]()([

)())]()([(2
)]([ln

*

2

1

*

wMwSwSE

wSwSwSE

iw
tZF




 .            (6)  

In this case during this operation we use zero phase wavelet 

2

1

* ))]()([()( wSwSEwW   separate for every trace. 

 

 
Figure 3. Reflectivity spectrum calculation. Left panel is acoustic 
impedance model, right panel is reflectivity.  

 
Figure 3 shows the reflectivity spectrum calculation scheme. 

Every k-th reflection generates the spectrum kiwt

ker
 and the 

full reflectivity spectrum will be 





K

k

iwt

k
kerwR

1

)( where K is 

the number of reflections. 

 

 

 
Figure 4. Amplitude (dB) spectrum of reflectivity. Color of 

curves corresponds to number of reflections. а1 = one reflection, 
а2 = two reflections, а5 = five reflections, а10 = 10 reflections, 

а100 = 100 reflections, and а1000 = 1,000 reflections. 

 

 
Figure 5. Synthetic modeling and inversion. Panels show (from left 
to right): first  model of acoustic impedance, second  reflectivity, 

third  synthetic seismic with Ricker wavelet, fourth  deconvolution 

result using equation (5), fifth inversion result  with wavelet 
equation (3), sixth inversion result based on whitening inversion 

equation (6). 

 

Figure 4 shows that the reflectivity spectrum is close to a 

“white” spectrum. So, equation (6) can be used for inversion if 

the wavelet function is unknown. Figure 5 shows the proposed 

technology applied to a synthetic dataset and generates similar 

inversion results both with and without a wavelet.  

 
For prestack inversion the proposed technology is based on the 

well-known Aki and Richards (2002) equations for PP 

reflectivity as function of angle: 

s

s

p

p

V

V
CC
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






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
 321
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






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  ,                    (7) 

where 2

1 tan1C ,  

 22

2 sin)(41C  ,  

 22

3 sin)(4C  , 

)(Z  - elastic impedance (Connolly, 1999) corresponded to 

angle  , 

 , 
pV , 

sV  -are the density and velocity for P- and S-waves. 

If we use a similar simplification to (1), then equation (7) can 

be rewritten as: 

sp VCCVCZ lnlnln)(ln 321  
 .     

For the continuous case and if use integration it can be written 

like 
)(ln)(ln

0

tZdttZ

t


    and according it the equation will be 

the following (Hampson and Russell, 2005): 

sp VCCVCZ lnlnln)(ln 321      .                           (8) 

Equation (8) together with (3) or, if the wavelet is unknown 

(6), can be used for prestack inversion. The calculations can be 

done in either frequency or time domains.  

 

Examples 
 
Figure 6 shows the seismic whitening results according to (5) 

and compared with the input data.   
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One-step (deconvolution + integration) seismic inversion 

Figure 6. Seismic whitening result. Comparison of cross-section and 

corresponding spectrum for input data (top row), and same data after 
whitening operation (bottom row).  

 

A poststack inversion synthetic example is given in Figure7. 

  
Figure 7. Synthetic example of poststack inversion in a frequency 

domain. a) Acoustic impedance wedge model. b) Synthetic seismic.  c) 
Inversion result with Tikhonov and Arsenin coefficient 0.1. d) 

Inversion result with Tikhonov and Arsenin coefficient 0.01.    

 

Figure 8 shows the inversion results based on equation (6), 

whitening inversion.  

.  

 
Figure 8. Whitening Inversion result. a) Seismic cross section. b) 

Acoustic impedance. 

 

Figure 9 shows synthetic examples for prestack inversion 

based on the proposed technique. 

 

 
Figure 9. Synthetic example for prestack inversion. On the first three 

panels the well logs with P-velocity, density and S-velocity are shown. 

The colored logs are a source for modeling and the black logs are the 

inversion results. The fourth panel is forward modeling results; elastic 
impedance for the angles from 0 to 50 degrees calculated using source 

P-velocity, density and S-velocity logs using Aki and Richard‟s (2002) 

equations. The fifth panel is synthetic seismic for the angles from 0 till 
50 degrees calculated using elastic impedance and a Ricker wavelet. 
 

Figure 10 shows prestack inversion results from a real data 

example. The comparison of the inversion results and 

independent well log data shows the robustness of the 

proposed technology. 

 

 
Figure 10. Prestack inversion results on cross sections for P-velocity 

cube, density cube, and S-velocity cube and their comparison with the 
well log data corresponded to these cubes. 

 

Conclusions 

 

The proposed technology includes seismic inversion of 

prestack and poststack seismic data sets with a statistical 

wavelet or with one extracted from well data. To get stable 

results we have applied an optimized Wiener filter and 

Tikhonov and Arsenin‟s regularization theories. Also, to 

stabilize the seismic inversion perform the calculations in one 

step - deconvolution simultaneously with integration. In this 

case seismic inversion is very stable in high frequency and can 

be effective stabilized in low frequency by using stabilization 

functional
pw

wM
2

1
)(  . Because in the operation is executed 

in the frequency domain, based on the FFT technique, the 

process is very fast and interactive. 

Our fundamental assumption in the proposing this technology 

is that the minimum use of a prior information will lead to 

more objective results, independent from the initial 

approximations introduced by the low frequency models 

commonly used to stabilize the solutions (Priezzhev et al., 

2009; Veeken et al., 2009; Priezzhev, 2010a; Priezzhev, 

2010b). This is especially important for applications in 

exploration.  
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