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Summary 

 

An unconventional production data analysis technology 

that uses on gravity and magnetic data was applied to the 
Eagle Ford formation. The prediction technology uses a 

neural network with multivariate input and multivariate 

output and is based on an evolutionary algorithm for neural 

network teaching. Simultaneously, multivariate neural 

network output allows for predicting several parameters, 

such as oil, gas, and water production rates. This prediction 

is based on multivariate Gaussian distribution theory and an 

objective function, in this case, Mahalanobis distance 

versus square distance for one-parameter prediction. In 

addition, we applied gravity and magnetic depth 

decomposition technology based on potential field inverse 

theory. 

 

Introduction 

 

Regional sweet spot analysis on the basis of production 

data analysis versus geological maps and other data sets, 

especially for unconventional resources has always been of 

great interest (Roth et al., 2012). In developing an analysis 

technology for production prediction, our intent was to use 

only an independent dataset for the prediction. A porosity 

map created from well log porosity values in the target 

interval, for example, is not completely independent from 

production because production data are dependent on the 

average porosity for the wells in the target interval. The 

porosity map will have very high correlation with the 

production data, but it will not be useful for predicting new 

areas for production because there is no additional 

information between wells. Other similar parameters 

created from well logs also will be originally depended to 

production rates. On the other hand, a seismic dataset is 

absolutely independent from production; seismic attributes 

have good correlation with production rates and so can be 

effectively used for production prediction.  

 

For many cases, especially for regional investigations, we 

do not have seismic dataset that covers all of the area of 

interest. In these cases, we can use gravity and magnetic 

data as an independent observation. To use the data more 

effectively, we propose to apply a simple inversion 

technique that allows us to calculate the 3D distribution of 

the density contrast parameters, which can have a better 

correlation to the production data from the target layer. 

We also applied a simultaneous-prediction technique for 

several parameters such as oil, gas, and water production. 

Simultaneous prediction for multivariate output requires 

minimization of the square difference together with 

crosscorrelation between predictive output parameters. This 

allows for prediction without the influence of the strong 

correlation between predicted parameters. 

 

Method 

 

For this prediction method, we used technology based on a 

nonlinear neural network (Figure 1) that can be built using 

a multivariate Gaussian distribution theory and which 

allows for simultaneous prediction of several parameters 

(for example: oil, gas, and water rates). 

 

  

Figure 1: Multi-input and multi-output neural network with 

one hidden layer. 

For multi-outputs, it is not enough to minimize just the 

square difference because with a multivariate Gaussian 

distribution, the objective function must include the 

crosscorrelation between output datasets. Let   
       

              define measured values of the 

predictive parameters, where N is the number of wells used 

for learning, K is number of predicted parameters, and   
   

correspond to predicted values.  The objective function for 

neural network learning will be the following: 
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where   is a crosscorrelation matrix between measured and 

predicted parameters (for example oil, gas, and water 

rates). Function  (  
    

 ) is usually called the 

Mahalanobis distance (Mahalanobis, 1927).  

In many cases, gravity or magnetic maps do not show a 

good correlation with production data because the maps 

usually show the sum of the effects from different depths. 

We propose to use a simple inversion technique that allows 
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Regional production prediction technology 

us to decompose these data to different depth sources. Only 

gravity and magnetic sources close to the target layer will 

be used for prediction. The gravity and magnetic depth 

decomposition technology that we used for prediction is 

based on the Kobrunov and Varfolomeev (1981) equation 

for density distribution in the wavenumber domain: 

 (       )  
 

 
 (       )

 (       )

∫  (       
 )         

    

,    (2) 

 

where  (       ) is density spectrum on depth = z, 

 (       ) is spectrum of the observed gravity field, 

 (       ) is the function that describes the density 

spectrum relation versus depth (z), 

      are wavenumbers corresponding to x, y, 

  √  
    

   is the radial wavenumber, 

  is the gravity constant. 

 

Another form of this equation is  (       )  
 (       ) (       )  where,  (       ) is the 

inversion operator in the wavenumber domain.  

Equation 2 is fundamental for understanding the nature of 

the gravity, or any other potential field, inversion and non-

uniqueness. We can use any function  (       ) to get 

the corresponding density contrast distribution  (       ) 
if the spectrum can be transferred back to the spatial 

domain. For example, if all sources of the gravity field are 

distributed within the depth interval from    to   , which 

means,  (       )              , then 

 (       )  
 

 (           )
. There also exist many other 

similar examples to get simple equations (Kobrunov and 

Varfolomeev, 1981).  

 

We propose to use  (       )            which is the 

vertical n-derivation of the gravity field from a singular 

source; the inversion operator is then (Priezzhev, 1989, 

2005) 

 (         )  
 

 
 
(   )   

  
           .                    (3) 

The inversion operator, equation 3, has a maximum   
 

 
   

and looks like a band frequency filter for the sources on 

depth.  Parameter n can be used for the slope of the filter 

curve (Figure 2).  

 

On the other hand, equation 3 is an inversion operator 

because it corresponds to equation 2, which means the 

density distribution calculated by means of equation 3 will 

exactly correspond to the observed field if we use forward 

modeling. 

 

Figure 2 demonstrates the spectra of inversion operators in 

accordance with equation 3 for different depths, showing 

the band-filtering nature of spectra. Figure 3 shows a 

synthetic example for using equation 3 to calculate the 

depth density distribution of the gravity field. The synthetic 

example shows the ability and limitations of the method to 

detect and separate sources of the gravity field.  

 
Figure 2: Spectra of inversion operator, equation 3, for different 
depths. 

    
Figure 3: Left, synthetic gravity field from four sources (size 

10x10 m, depth from left to right, 200 m, 100 m, 150 m, 300 m, 
with corresponding density contrast of 1, 0.7, 0.5, and 1 g/cm3, 

respectively). Right, density contrast distribution according 

equation 3 Maximum gravity field is 0.008 mGal. 

 

We can apply the same equations and the same approach 

for the inversion of magnetic data to calculate magnetic 

source parameters (relative magnetization or magnetic 

“density” contrast). The difference lies only in the 

following: 

 We transfer magnetic data to the pole according 

Baranov’s algorithm (Baranov, 1957). To do this, we 

must know the vector of the Earth’s normal 

magnetization (usually in form of dip and azimuth). 

 We must calculate pseudo gravity from magnetic data. 

This means that we need to fulfil an integration 

operation or be in a wavenumber domain, thus, we 

must use the following additional multiplier 
 

  
, 

where   √  . 

 

For production prediction in the Eagle Ford formation, we 

use density contrasts calculated from equation 3 around the 

target layer within a defined radius of 500 feet based on 

both gravity and magnetic fields. To teach the neural 

network, we use an evolutionary algorithm with the 

objective function, equation 1 for simultaneous prediction 

of several parameters: average oil, gas, and water rates for 

1 year. Application of the evolutionary algorithm allows us 

to find a solution that can be very close to a global 

minimum of the objective function.  

 

The number of neurons in the hidden layer of the neural 

network gives the advantage of managing the power of the 

nonlinearity. If the number of neurons is zero, the network 

creates a simple linear prediction operator (linear 

regression).  

Figure 1.  Spectrum of inversion operator for different depth and with n=4
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Regional production prediction technology 

 

To eliminate the “overlearning” effect that causes 

instability and nonuniqueness for the prediction operator, 

we use the Tikhonov regularization method (Tikhonov and 

Arsenin, 1977) to stabilize the prediction operator. For this 

purpose, we add Tikhonov stabilization to the objective 

function, equation 1: 

 (  
    

 )   ∑   
  

                     (4)  

where    is  neural network coefficient 

   is number of all neural network coefficients and 

thresholds,  

    is the regularization parameter of Tikhonov, which 

can be defined empirically 

Minimization of equation 4 does not allow the neural 

network to create very high contrast coefficients, and that 

creates more stable prediction results. 

 

Eagle Ford Example 

 

For the production data analysis, we used about 45,000 

production wells from the Eagle Ford formation, Texas, 

USA, with 1- year average production rates for oil, gas, and 

water. All production data were downloaded from an IHS 

database. In Figure 3, the satellite gravity field (Sandwell 

and Smith, 2009; Sandwell et al., 2013) is shown, and in 

Figure 4, the magnetic field (Maus et al., 2009) is 

presented. Figures 5 and 6 demonstrate the 3D distribution 

of density contrast and magnetic “density” contrast 

calculated via equation 3. From a visual analysis of the 

gravity and magnetic maps, it can be clearly seen that the 

production wells are commonly positioned on the gradient 

of these fields. In 3D view, this position corresponds to 

negative density contrast for gravity inversion results and 

negative magnetic “density” contrast for magnetic field 

inversion results. 

 

 
Figure 3: Satellite gravity field (mGal) and 45,000 production 

wells in the Eagle Ford. Green sectors in pie charts are cumulative 

oil production, red sectors are cumulative gas production, and size 
of pie charts is cumulative oil production.  

 
Figure 4: Magnetic field and 45,000 production wells in the Eagle 
Ford. Green sectors in pie charts are cumulative oil production, red 

sectors are cumulative gas production, and size of pie charts is 

cumulative oil production. 

 

 
Figure 5: 3D view of the density contrast distribution (red is 
positive and blue is negative) according equation 3 and production 

wells (colored spheres) in the Eagle Ford. 

 

 
Figure 6: 3D view of the magnetic “density” contrast distribution 

(red is positive and blue is negative) according equation 3 and 
production wells (colored spheres) in the Eagle Ford. 

 

 

Figures 7 and 8 demonstrate oil and gas production 

prediction results based on the neural network (three 

neurons in hidden layer) from the gravity and magnetic-

density distribution around the Eagle Ford target layer. The 

final correlation coefficient was 0.63 for oil production 

prediction and 0.55 for gas production prediction for the 

entire Eagle Ford area studied. If use only central and 

eastern parts of Eagle Ford area then the correlation 

coefficient will be 0.89 and 0.75 correspondently for oil 

and gas production rates.  For both parameters, oil and gas 
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production rates, we used the 1-year cumulative value for 

each well. 

 

The cross section in Figure 9 shows the density contrast 

and gravity, magnetic, and production prediction results. 

The position of wells with good oil production in Figure 9 

has a very clear correlation with negative density contrast. 

 

 
Figure 7: Oil production prediction map and production wells in 

the Eagle Ford. Size of pie charts is cumulative oil production. 

 

 
Figure 8: Gas production prediction map and production wells in 

the Eagle Ford. Size of pie charts is cumulative gas production. 

 

 
Figure 9: Cross section with density contrast distribution (red is 

positive and blue is negative) along line A-B (see position on 

Figure 8). The black curve is the gravity field, and the red curve is 
the magnetic field. The blue curve is the oil production prediction. 

The red ellipse shows good oil producer, and blue ellipse shows 

poor oil producers.  
 

 

 
 

Conclusions 

 
The proposed technology enables a user to simultaneously 

predict multiple parameters (such as oil, gas, and water 

production) for the target formation in an unconventional 

reservoir. To identify the sweet spot, a variety of 

independent inputs (seismic data, gravity data, magnetic 

attributes, etc.) can be applied. To achieve better correlation 

of the production data and gravity and magnetic fields, a 

simple inversion technology is proposed to calculate the 

volume of density contrast close to target layer.  The 

primary advantages of using a nonlinear operator based on 

a neural network and evolutionary algorithm are as follows: 

 The technique gives us the ability to simultaneously 

predict several variables (such as oil, gas, and water 

production rates). 

 The iterative search for solutions is based on an 

evolutionary algorithm that finds a solution very close 

to a global minimum.  

 Simultaneous prediction for multivariate output 

requires minimization of the square difference 

together with crosscorrelation between predictive 

output parameters (oil, gas, and water rates). This 

allows for prediction without the influence of the 

strong correlation.  

 The degree of nonlinearity of the relationships can be 

managed through the dimension of the hidden layer. If 

there is no hidden layer, searching is done by linear 

regression. Linear and nonlinear regression and the 

neural network have the same nature and, also, the 

same problems of instability and nonuniqueness. 

 The instability and nonuniqueness can be eliminated 

using a Tikhonov stabilization approach. The 

technique has the advantage of a lack of sensitivity to 

the huge number of highly correlated input attributes 

because neural networks can automatically 

compensate for the highly correlated input through 

thresholds for input coefficients and using the 

regularization technique. 
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