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ABSTRACT

Multivariate predictive analysis is a widely used tool in the
petroleum industry in situations in which the deterministic nature
of the relationship between a variable that requires prediction and
a variable that is used for the purposes of such prediction is un-
known or very complex. For example, to perform a sweet-spot
analysis, it is necessary to predict potential oil and gas production
rates on a map, using various geologic and geophysical attribute
maps (porosity, density, seismic attributes, gravity, magnetic, etc.)
and the initial oil and gas production rates of several control or
training wells located in the area of interest. We have developed a
new technology that allows for building a stable nonlinear pre-
dictive operator by using the combination of a neural network,
a genetic algorithm, and a controlled gradient method. The main

idea behind the proposed technology is to combine stochastic and
deterministic approaches during the construction of the predictive
operator at the training stage. The proposed technology avoids
many disadvantages of the genetic algorithm and gradients meth-
ods, such as a high level of dependency on the initial values; the
phenomenon of over-fitting (overtraining), which results in cre-
ation of an operator with unstable predictability; and a low speed
of decreasing error during iteration, and, as a result, a low level of
prediction quality. However, the above-mentioned combination
uses the advantages of both methods and allows for finding a sol-
ution significantly closer to a global minimum for the objective
function, compared to simple gradient methods, such as back
propagation. The combination of these methods together with Ti-
khonov regularization allows for building stable predictions in
spatial or/and time coordinates.

INTRODUCTION

A neural network is a nonlinear operator that is widely used for
predictive analysis in the petroleum industry (Ali, 1994; Roth and
Tarantola, 1994; Schultz et al., 1994a, 1994b; Chen and Sidney,
1997; Russell et al., 1997; Boadu, 1998; Liu and Liu 1998; Hamp-
son et al., 2001; Mogensen and Link, 2001; Veeken et al., 2009;
Priezzhev et al., 2014). A neural network predictive operator has
several significant advantages (Schultz et al., 1994a, 1994b; Bishop,
1995; Girosi et al., 1995). First, the operator allows for controlling
of the nonlinearity and the degree of freedom via the number of
hidden nodes and through the choice of the activation function type.
Second, the operator can be used in very complex cases in which the
relationship between dependent (predicted) variables and indepen-
dent (input) variables is unknown or turns out to be too complex to
use a deterministic approach.

The neural network predictive operator has also several disadvan-
tages (Schultz et al., 1994a, 1994b; Bishop, 1995; Girosi et al.,
1995). Among them is the phenomenon of overfitting (overtraining)
resulting in creation of an operator with unstable predictability. In
addition, if the training data set range does not cover the space of
possible dependent variable values, then the trained operator can
again result in unstable predictability.
To train a neural network, two main techniques are usually ap-

plied. First, there is a family of back-propagation algorithms, which
typically implement gradient methods (Bishop, 1991, 1995; Schultz
et al., 1994a, 1994b). The main problem with this type of training
algorithms is that they have the following limitations: First, only a
local minimum of the objective function that is close to the initial
value of the neural network parameters is estimated. Second, this
technique can produce very different predictive results for
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several different initial values. As a result, this technique has a very
low probability of finding a global minimum.
The second type of training technique consists of finding optimal

neural network parameters by using a genetic algorithm (Whitley
et al., 1990; Bishop and Bushnell, 1993; Veeken et al., 2009). On
the one hand, this technique allows simultaneous analysis of many
variants of neural networks and thus enables us to find the global
minimum of the objective function with high probability. On the
other hand, it has a low convergence rate because a new generation
of neural networks is created using a random process (crossover and
mutation) that does not allow convergence to the best solution as
efficiently, as the gradient methods. In addition, there is still no
guarantee of finding a global minimum.
One of the common stabilization approaches for both training

techniques is Tikhonov regularization (Bishop, 1995; Girosi et al.,
1995). Tikhonov regularization requires an additional member in
the objective function, which usually is the sum of squares of all
coefficients in the predictive operator and which thus impedes co-
efficients from growing very large (Tikhonov and Arsenin, 1977;
Ivanov et al., 2013).
The combination of the genetic algorithm and gradient methods

(Mishra and Debroy, 2006) is considered to be a promising ap-
proach to building a stable neural network and will continue being
developed in the future.

CONTROLLED GRADIENT METHOD

We propose to use the controlled gradient method developed by
Kobrunov (1978, 1983, 1988, 1994) during the genetic algorithm’s
training iterations. The controlled gradient method (see Appen-
dix A) can be described as follows:

ξnþ1 ¼ ξn þ αn½J�J�−1
�
∂Fðxl; ξnÞ

∂ξ

��
½yl − Fðxl; ξnÞ�; (1)

αn ¼ −

D
ϕn

��� ∂Fðxl;ξnÞ∂ξ ½J�J�−1
h
∂Fðxl1;ξnÞ

∂ξ

i�½yl1 − Fðxl1; ξnÞ�
E

��� ∂Fðxl;ξnÞ
∂ξ ½J�J�−1

h
∂Fðxl1;ξnÞ

∂ξ

i�½yl1 − Fðxl1; ξnÞ�
��� ;

(2)

where ŷ ¼ Fðx; ξÞ∶RN → RM is a common type of the neural net-
work operator, for example, a classic multilayer neural network with
one hidden layer: ŷ¼fym ¼ SðPNh

ih
bmih · Sð

P
N
j¼1aihj · xj;pihÞ;qmÞ;

m¼ 1÷Mg.
The vector ξ ¼ ðb; p; a; qÞ ∈ RK holds the unknown coefficients

(weights) of the neural network operator and is of length: K ¼
N · Nh þ Nh · M þ Nh þM, where

• N is the number of input (independent) variables, i.e., the
length of the input vector x that is used for training or pre-
diction.

• M is the number of output (dependent) variables in output
vector ŷ, which forms the prediction of y. Commonly, there
will be only one prediction variable (M ¼ 1), but sometimes
it is advantageous to simultaneously predict several varia-
bles, such as, for example, the initial oil and gas rates of pro-
ducer wells in unconventional exploration.

• Nh is the number of nodes in the hidden layer, and Sðx; pÞ is
an activation function. Commonly, a sigmoid function or the
identity function is used.

• ðxl ¼fxlj;j¼ 1÷Ng;yl ¼fylm;m¼ 1 ÷Mg; l¼ 1 ÷LÞ is the
training data set, and L ×M > K is a number of training pairs
ðxl; ylÞ.

• αn is the relaxation coefficient that is designed for maximum
iteration speed (Denysiuk and Kobrunov, 1983), k:k denotes
L2 norm, h:j:i denotes the inner product, and ½:�� denotes the
conjugation or transpose for noncomplex matrix.

• ϕn ¼ yl − Fðxl; ξÞ is a vector fφn
m; m ¼ 1 ÷ ðL ×MÞg of

prediction errors at the current iteration, l ¼ 1 ÷ ðL ×MÞ.
• ½∂Fðxl; ξÞ∕∂ξ� is K × ðL ×MÞ matrix and ½∂Fðxl; ξÞ∕∂ξ�� is

the transpose ðL ×MÞ × K matrix that transfers error vector
yl − Fðxl; ξÞ with ðL ×MÞ dimensions to vector ξ with K
dimensions.

The matrix ½J�J�−1 represents a priori information that modifies
the movement direction given by the gradient, for example, according
to a common trend of the objective function (Himmelblau, 1972). If it
is a unit matrix, the movement has the direction to a local minimum.
Iterating according to equations 1 and 2 guarantees finding a

value close to the initial value ξ0 and, in the direction influenced by
a priori information defined by the matrix ½J�J�−1, that is a local
minimum of the objective function:

kyl − Fðxl; ξÞk2RL×M → min; ξ ∈ RK: (3)

Euler’s equation according to the objective function 3 is
½∂Fðxl; ξÞ∕∂ξ��½yl − Fðxl; ξÞ� ¼ 0, and it can be used as a base for

iteration processes 1 and 2.
Let us assume that in a neighborhood of ξn, a pair of vectors ξn1 −

ξn2 is selected. For example, this pair can be the current and parent
vectors during an iteration according to a classic genetic algorithm.
The system matrix for this pair can be calculated as follows (Him-
melblau, 1972):
Ψ ðxl; ξnÞ ¼ Fðxl; ξn2Þ − Fðxl; ξn1Þ∕ξn2 − ξn1 and the iterative proc-

esses 1 and 2 can be modified to

ξnþ1 ¼ ξn þ αn½J�J�−1½Ψ ðxl; ξnÞ��½yl − Fðxl; ξn2Þ� (4)

αn ¼ −
hϕnjΨ ðxl; ξnÞ½J�J�−1½Ψ ðxl; ξnÞ��½yl1 − Fðxl1; ξnÞ�i
kΨ ðxl; ξnÞ½J�J�−1½Ψ ðxl; ξnÞ��½yl1 − Fðxl1; ξnÞ�k :

(5)

If we were to use only equations 4 and 5, the result would be
highly dependent on the initial value ξ0, as with any other gradient
method, and usually this would allow finding only a close-by local
minimum. Even though when using a priori information according
to ½J�J�−1 the probability of finding a global minimum of the ob-
jective function increases, it is still not guaranteed.

COMBINED METHOD

Our suggestion to combine a genetic algorithm with the con-
trolled gradient method for training a nonlinear neural network op-
erator follows the below-described procedure (Figure 1):
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1) Create an initial generation of neural networks; i.e., create sev-
eral realizations of the network coefficients ξ0 by drawing them
from a random function.

2) Select a small number of the best members of a generation, i.e.,
variants of neural networks with the smallest objective function.
(This is the selection stage of the genetic algorithm.)

3) Create the next generation from the selected best objects accord-
ing to the following rules:

• Controlled gradient: Adjust the coefficients for current
objects ξn according to their parent objects ξn−1 using
equations 4 and 5. It is important to take this step before
the crossover and mutation operations because it can sig-
nificantly move ξn from ξn−1 and as a consequence result
in a bad approximation of the derivative. This step cannot
be applied for a first iteration because the parent object
does not exist.

• Crossover: Exchange coefficients between randomly
chosen selected members.

• Mutation: Add small random perturba-
tions to the resulting coefficients of the
previous step. This operation is usually
applied only to the defined part of ran-
domly selected members.

Repeat steps 2 and 3 until the objective func-
tion becomes small or until a few maximum iter-
ations are achieved.
Using equations 4 and 5 for calculation of the

objects for the next generation is rather easy
because it relies only on the current and parent
objects. This allows including the calculations
directly in the genetic algorithm. We use calcu-
lations 4 and 5 only for selected objects with
the smallest errors because the calculation cost is
higher compared to the simple calculation for
crossover or mutation.
Due to the stochastic nature of the predicted

results, it is reasonable to calculate several real-
izations of the prediction and then calculate an
average value, standard deviation, and P10, P50,
P90 values in any predicted position. This tech-
nique allows estimating the prediction quality
via a standard deviation and provides for a more
stable result.
Because a neural network operator can be

trained by using the proposed scheme when com-
bining the genetic algorithm with the controlled
gradient method (equations 4 and 5), this has the
following main advantages:

1) Using stochastically changed initial values
for the controlled gradient method can in-
crease the probability of finding the global
minimum.

2) The controlled gradient procedure is fast be-
cause the optimal relaxation coefficient (5) is
used.

3) There are no restrictions to the internal struc-
ture and complexity of the neural network
because the calculation of the gradient

Fðxl; ξn2Þ − Fðxl; ξn1Þ∕ξn2 − ξn1 and other components of equa-
tions 4 and 5 can be performed numerically.

4) The matrix ½J�J�−1 allows using common a priori information
in the most effective way to find a global solution with a higher
probability. Our general recommendation is to apply it accord-
ing to the global trend of the objective function. For example, a
smoothed version of the objective function can be used as a
trend. As an alternative, we propose using several directions
of movement for iterations simultaneously, which can increase
the probability of finding a global minimum.

The proposed procedure avoids many disadvantages of a classic
genetic algorithm, especially, the low speed of the decreasing error
during iteration. It also allows avoiding many disadvantages of the
gradient methods, such as a high level of dependency on the initial
values and a high level of error during final iterations.

Figure 1. Neural network training scheme based on the combination of the genetic al-
gorithm and the controlled gradient method.
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EXAMPLE

For the purposes of testing the proposed technology, we used a
data set from the Avalon Shale, an unconventional shale play in
the Delaware Basin in New Mexico. The basis for the independent
variables was a seismic cube with original amplitudes in the depth
domain. In addition, we used production data that were downloaded
from an IHS database. The variable to predict was the one-year initial
barrel of oil equivalent normalized by the actual number of produc-
tion months in the year and by the length of the horizontal part of the
wells. In total, we used 84 horizontal wells that have the Avalon shale
formation as a production target and that intersect with the seismic
cube. We distributed production points equally in the horizontal part
of the wells at the horizontal distance of 304.8 m (1000 ft.), and,
accordingly, there were 658 production points used for training.
This approximation of the production profile was necessary be-

cause we had no information about the distribution of production
along the horizontal part of the wells. The approximation allows
restoring the production profile based on the seismic attributes dur-
ing the training stage. To predict the production rate, we used the
original seismic amplitudes in a vertical window around the produc-
tion points with the vertical size of 107.3 m (352.1 ft. or 21 sam-
ples). In addition, we used all the neighboring traces around the
central trace that created a moving window with nine seismic traces.
Thus, in total, we used 21 × 9 ¼ 189 input parameters in our oper-
ator. Therefore, in total, we used 189 seismic samples as the input to
neural network from the original seismic cube around every produc-
tion point during the training stage and then around the prediction
position during the calculation stage. Only the volume of stacked
seismic amplitudes was used for the purposes of the predictive analy-
sis. The reasons for that are as follows:

1) We used a moving window input to the neural network, which
means that we relied on several values from one volume distrib-
uted around the center sample of the moving window. For exam-
ple, in our case, the moving window consists of nine traces and
21 samples. Therefore, we actually used 189 samples (188 sam-
ples around the center sample).

2) In this case, we believe that the neural network can use this
distribution more effectively for prediction purpose compared
to using several seismic attributes such as input because seismic
attributes also use a moving window during the calculation,
whereas the neural network has a high level of power of freedom
to directly obtain the needed information from such distribution.

3) Also, we believe that using several input cubes, such as an angle
stack or results of its inversion, can improve the prediction.
However, elastic cubes in the data set that could be used for
the prediction were not available to us in this case.

4) Moreover, this technique greatly increases the input size and
crosscorrelations for input parameters, but it has the advantage
of predictive accuracy (Priezzhev et al., 2009; Veeken et al.,
2009; Priezzhev et al., 2014).

Three nodes were used in the hidden layer and, in total there were
574 unknown coefficients in neural network nonlinear operator
(189 � 3þ 1 � 3þ 3þ 1 ¼ 574, where 189*3 is the connection
from 189 inputs to three hidden nodes, 1*3 is the threshold coef-
ficients for hidden nodes, 3 is the connection from hidden nodes to
one output, and 1 is the threshold coefficient for one output). The
genetic algorithm used the following main parameters: The popu-
lation size was 100, selection size was 10, and mutation ratio was
5%. In addition, we used the “elitism” option for one the best neural
networks allowing it to pass to new generation without changes. In
this case, the error will decrease or stay without changes. We used
several iterations without changes as a rule for increasing or de-
creasing mutation ratio. If the number of iterations without changes
becomes high, the mutation ratio should be decreased to ensure the
convergence of the iteration process, and vice versa, if the number
of iterations without changes equals zero, the mutation ratio can be
increased, which will speed up the iteration convergence. The pre-
diction was performed in a 3D volume, restricted by two surfaces,
i.e., the top and the bottom of the target shale layer.
Figure 2 shows a comparison of the errors during the training iter-

ations for five realizations of the genetic algorithm only, five realiza-
tions of the method combining the genetic algorithm and controlled
gradient scheme, and five variants of initial values for the controlled

gradient method. This clearly demonstrates that
the combined method converges faster than the
classic genetic algorithm and achieves a smaller
predictive error. The controlled gradient method
shows the dependency on initial values and is re-
stricted to finding only a local minimum. Figure 3
shows the prediction quality of the production
points used for neural network training. Red
points and regression on the crossplot show the
correlation between measured and predicted val-
ues for the production points used for training.
The correlation coefficient between measured and
predicted production rate is greater than 0.67,
showing a good training quality. Blue points
and regression on the crossplot show the correla-
tion between measured and predicted values for
the production points that were not used during
the training and provide for a quality control of the
prediction. The correlation coefficient is greater
than 0.61, showing good prediction results. The
green points and regression on the crossplot show
the correlation between the measured and pre-

Figure 2. Training rate, i.e., error versus iterations for five variants of the initial values of
the controlled gradient (yellow curves), for five realizations of the genetic algorithm (red
curves), and for five realizations of the combined genetic algorithm and controlled gra-
dient methods (blue curves).
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dicted values of all the available production points obtained as a result
of using prediction operator with training based on only the classic
genetic algorithm. The correlation coefficient is approximately 0.6
and is lower than the quality control correlation for the neural net-
work created by the combined method.
The relatively small correlation coefficient can be explained by

the complex nature of the production rate that
is dependent on several independent factors.
The first and the main factor impacting the pro-
duction rate is the reservoir quality or its geologic
potential for production, such as an upper limit for
possible production rate in a particular point. The
second factor is the completion and drilling qual-
ity, which can significantly decrease the produc-
tion rate relative to the geologic potential. It
should be noted that our goal is to predict only
the geologic potential of the formation, and only
this part has a statistical relation to the seismic
data because the completion quality and the drill-
ing quality have no relevance to the seismic data.
This was the reason for using the neural network
with a high level of power of freedom of predic-
tive operator that allows separating these two fac-
tors. Additionally, using equal production values
over the horizontal part of the wells may introduce
wrong training points.
Figure 4 shows a cross section through the in-

put seismic cube and the result cube. In Figure 5,
we demonstrate the predicted 3D cube (only for
the target shale layer) that is calculated via the
predictive operator. The results can be used for
new well placement. Figure 6 shows the estima-
tion of P50, P10, P90, and the standard deviation
based on the calculation of 10 realizations.

DISCUSSION

In some cases, the number of training pairs
ðxl; ylÞ, l ¼ 1 ÷ ðL ×MÞ can be extremely high.
For example, the number of horizontal wells in the
Eagle Ford Formation is more than 12,000 (Priezz-
hev et al., 2014). This can create a very large ma-
trix ½∂Fðxl; ξÞ∕∂ξ� and error vector ylm − Fðxl; ξÞ
that can significantly prolong the calculation time.
Especially, it can be significant in the case of deep
neural network with more the one hidden layer that
can increase the number of unknown coefficients.
In this case, we can recommend reducing the num-
ber of training pairs by applying or combining of
the following approaches:

1) Divide the training set in two parts. The first
part will be used for training, and the second
one will be used only for quality control.
This division can be randomly changed for
each iteration.

2) Divide the area of investigation into several
parts containing a smaller number of training
pairs. These parts can intersect to create a rel-
atively continued result.

3) Combine some training pairs if they are similar or equal. This
technique can be based on well-known automatic classification
algorithms such as K-means or SOM.

We also propose to use the matrix ½J�J�−1 for setting the priority
of the coefficients ξpred predefined in the previous neural network.
In this case, the matrix will calculate the direction of the iteration

Figure 3. The neural network training quality cross section shows the measured produc-
tion rate versus the predicted rate. Red circles and regression (correlation coefficient 0.67)
show the neural network prediction results based on production points used for training
(75% from all production points). Blue circles and regression (correlation coefficient 0.62)
are the 25% production points that are not used for neural network training, but used only
for quality control. Green circles and regression (correlation coefficient 0.60) show the
neural network prediction results obtained by applying only the classic genetic algorithm.

Figure 4. (a) Crossline within the source seismic cube and (b) the result cube. The bub-
bles show a one-year production of oil (green), gas (red), and water (blue), and their size
shows the cumulative value. The borehole projection from the crossline is �300 m.
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from the current values of ξn to these coefficients. Here, the matrix
will work as the memory for the previously trained neural networks
and will allow retraining, if we will get additional train information
for it. In the future, we plan to apply this technique in practice for
the purposes of training and retraining deep neural networks as an
alternative to using ξpred as initial values.

CONCLUSIONS

The proposed method for training a nonlinear neural network
based on the combination of the genetic algorithm and the con-

trolled gradient method allows creating a predic-
tive operator with smaller prediction error.
The combination of a genetic algorithm and the

controlled gradient methods is more robust and
obtains a better overall result. The deterministic
“controlled-gradient method”works better in com-
bination with the stochastic “genetic algorithm”
because it uses stochastically changed initial val-
ues and thus achieving a smaller predictive error.
The stochastic genetic algorithm works better in
combination with the deterministic controlled-gra-
dient method because it uses an optimal gradient
element during the new generation creation.
The proposed predictive technology shows the

effectiveness in sweet-spot tasks and can also be
used for various other purposes and applications.
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APPENDIX A

CONTROLLED GRADIENT
METHOD THEORY

The approach described below is titled the
controlled-gradient method, developed by Ko-
brunov (1978, 1983, 1988, 1994). It allows using
formal a priori information to avoid nonunique-
ness of the solution and is based on the Tikhonov
optimization methods theory (Tikhonov and Ar-
senin, 1977).
A neural network predictive operator with any

complexity of the internal structure, for example,
a classic neural network with one hidden layer, is
usually based on a nonlinear weighted sum ac-
cording to the following:

Fðx;ξÞ∶RN→RM;

ŷ¼
�
ym¼S

�XNh

ih

bmih ·S

�XN
j¼1

aihj ·xj;pih

�
;qm

�
;m¼1÷M

	
;

ξ¼ðb;p;a;qÞ∈RK;

K¼N ·NhþNh ·MþNhþM

dimðbÞ¼dimðpÞ¼Nh;dimðaÞ¼N;dimðqÞ¼M; (A-1)

whereN is the number of input (independent) variables in the vector
x that is used for prediction;M is the number of output (dependent)
variables in the vector y that is necessary to predict; often in our

Figure 5. The 3D cube with the prediction results (3D sweet spot) using a nonlinear neu-
ral network operator for the shale layer. The resulting cube is shown with the inline, cross-
line, and stratigraphic slice along the bottom of the target shale layer. Production points are
distributed along the horizontal part of the wells with an equal, approximately 300 m,
distance.

Figure 6. Part of the 3D cube with the results of the calculations of several realizations:
(a) P50, (b) P10, (c) P90, and (d) the standard deviation.
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application, there is only one output variable; however, sometimes it
is convenient to predict several variables simultaneously, for exam-
ple, initial oil and gas rates; Nh is the number of nodes in the hidden
layer; K is the number unknown coefficients (weights) of the neural
network operator;Sðx; pÞ is an activation function; usually it is a sig-
moid function Sðx; pÞ ¼ 1∕1þ exp−ðx − pÞ or the identity func-
tion SðxÞ ¼ x.
Therefore, it is necessary to find the following operator:

Fðx; ξÞ ¼ ŷ; (A-2)

based on the training data set: ðxl ¼ fxlj; j ¼ 1 ÷ Ng; yl ¼
fylm;m ¼ 1 ÷ Mg; l ¼ 1 ÷ LÞ where L ×M > K is the number of
training pairs ðxl; ylÞ, l ¼ 1 ÷ ðL ×MÞ and with the following ob-
jective function:

kyl − Fðxl; ξÞk2RL×M → min; ξ ∈ RK: (A-3)

The Euler’s equation according to equation A-3 is the following:

�
∂Fðxl; ξÞ

∂ξ

��
½yl − Fðxl; ξÞ� ¼ 0; (A-4)

where ½∂Fðxl; ξÞ∕∂ξ� is K × ðL ×MÞ matrix and ½∂Fðxl; ξÞ∕∂ξ�� is
the transpose ðL ×MÞ × K matrix that transfers error vector ylm −
Fðxl; ξÞ with ðL ×MÞ dimensions to vector ξ with K dimensions.
According to equation A-4, to find a local extreme close to ξ0, we

can use the following iterations:

ξnþ1 ¼ ξn þ αn
�
∂Fðxl; ξnÞ

∂ξ

��
½yl − Fðxl; ξnÞ�: (A-5)

The convergence of this process to the solution (equation A-4)
requires regularity of the operator Fðxl; ξÞ in the vicinity of the de-
sired solution ξ, which includes all ξn.
Let us request the fastest minimization in iterations A-5 of the

error vector ϕn ¼ yl − Fðxl; ξÞ with ðL ×MÞ dimensions:

ϕn¼yl−Fðxl;ξÞ¼yl−F

�
xl;ξnþαn

�
∂Fðxl1;ξnÞ

∂ξ

��

× ½yl1−Fðxl1;ξnÞ�
�

≈yl−Fðxl;ξnÞþαn
∂Fðxl;ξnÞ

∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1−Fðxl1;ξnÞ�

¼ϕnþαn
∂Fðxl;ξnÞ

∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1−Fðxl1;ξnÞ�; (A-6)

where index l ¼ 1 ÷ ðL ×MÞ and additional index l1¼ 1÷ ðL×MÞ
define order of the operations.
It is important to keep in mind that the error vector ϕn and vector

yl have the same dimension L ×M. Hence,

kϕnþ1k2¼
����ϕnþαn

∂Fðxl;ξnÞ
∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1−Fðxl1;ξnÞ�

����
2

¼kϕnk2þ2αn


ϕn

����∂Fðx
l;ξnÞ

∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��

× ½yl1−Fðxl1;ξnÞ�
�
þðαnÞ2

����∂Fðx
l;ξnÞ

∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��

× ½yl1−Fðxl1;ξnÞ�
����
2

¼kϕnk2�qðαnÞ; (A-7)

where

qðαÞ ¼ 1þ 2αn


ϕn

���� ∂Fðx
l; ξnÞ
∂ξ

�
∂Fðxl1; ξnÞ

∂ξ

��

× ½yl1 − Fðxl1; ξnÞ�
�
∕kϕnk2þ

ðαnÞ2
���� ∂Fðx

l; ξnÞ
∂ξ

�
∂Fðxl1; ξnÞ

∂ξ

��
½yl1 − Fðxl1; ξnÞ�

����∕kϕnk2:

(A-8)

Function qðαÞ describes the change of error function with coef-
ficient relaxation α. A request to maximize the speed of error min-
imization means minimization of function qðαÞ by α:

αn ¼ −



ϕn

���� ∂Fðxl;ξnÞ∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1 − Fðxl1; ξnÞ�

�
���� ∂Fðxl;ξnÞ

∂ξ

�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1 − Fðxl1; ξnÞ�

����
2

: (A-9)

Iterations A-5 will find the vector ξ close to ξ0 as the local mini-
mum of the objective function A-3 in a fastest way by using the
adaptive relaxation coefficient in equation A-9. In cases in which
the objective function A-3 has more than one local minimum and
the task is to find the global minimum, we need to repeat the iter-
ation A-5 for many different initial values ξ0.
Using the matrix form for the training data sets defined as

X ¼ fxlg ¼ fxlj; j ¼ 1 ÷ N; l ¼ 1 ÷ LgεRN·L and Y ¼ fylg ¼
fylm; m ¼ 1 ÷ M; l ¼ 1 ÷ LgεRM·L, operator 2 can be rewritten in
vector form:

FðX; ξÞ ¼ Y: (A-10)

The solution does not exist, in a strict mathematical sense, for any
pairs ðX;YÞ ∈ RN·L × RM·L. To solve the problem, let us consider
the varietyM ¼ ImFðX; ξÞ ⊆ Y for operator A-10 with the defined
matrix X and use ξ in all RK and Im notate image of function in its
domain. Let us describe the quasi-solution for operator A-10 as fol-
lows:

FðX; ξÞ ¼ PðM;YÞ; (A-11)

where PðM;YÞ is projection of vector Y to consider the varietyM.
It is natural to suggest that the quasi-solution of equation A-11

is not unique in the sense that the same pair fX; PðM;YÞg
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corresponds to the varietyA vectors ξ, which are ∀ ξ∈A∶FðX;ξÞ¼
PðM;YÞ. The structure of the variety is not defined and can be pre-
sented as a nonlinear variety in RK . However, if we assume that the
area of nonuniqueness is very complex and nontrivial, then we must
apply an additional rule to find the solution from this area U (U
contains more than one solution). Let us define this rule as a request
to find the minimum of the functional:

kJ½ξ − ξ0�kRK → min; ξ ∈ U; (A-12)

where ξ0 is the initial values of the operator coefficients and J is
the multiplicities component of the criteria A-12 that defines the di-
rection of moving from ξ0 to find the solution from U. Iterations A-5
define the direction of moving exactly according to the gradient di-
rection. Combine equations A-11 and A-12:

FðX; ςÞ ¼ PðM;YÞ;
kJ½ξ − ξ0�kRK → min : (A-13)

The necessary condition for equation A-13 is the following:

ξ ¼ ξ0 þ ½J�J�−1
�
∂FðX; ςÞ

∂ς

��
λ; (A-14)

where λ is some element from conjugate space PðM;YÞ.
An equivalent to equation A-14 can be the following:

ξ ¼ ξ;0 þ½J�J�−1
�
∂Fðxl; ξÞ

∂ξ

��
½λl�;

λ ¼ fλl; l ¼ 1 ÷ Lg: (A-15)

Finally, equation A-15 can be written as the following iterative
procedure that generalizes equation A-5 and allows finding the sol-
ution for equation A-13:

ξnþ1 ¼ ξnþαn½J�J�−1
�
∂Fðxl;ξnÞ

∂ξ

��
½yl−Fðxl;ξnÞ�; (A-16)

αn ¼ −



ϕn

���� ∂Fðxl;ξnÞ∂ξ ½J�J�−1
�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1 − Fðxl1; ξnÞ�

�
���� ∂Fðxl ;ξnÞ

∂ξ ½J�J�−1
�
∂Fðxl1;ξnÞ

∂ξ

��
½yl1 − Fðxl1; ξnÞ�

����
;

(A-17)

where ϕn ¼ ½yl − Fðxl; ξnÞ� error vector with ðL ×MÞ dimensions.
In the multiple nonuniqueness condition for the task,

kFðX; ςÞ − YkRM·L → min;

ς ∈ Rk: (A-18)

Equations A-16 and A-17 allow finding the solution according to
the initial values ξ0 and matrix ½J�J�−1 that defines the direction of

movement of the iterations and can be calculated based on common
a priori assumption.
The problem (equation A-11) is unstable due to the problem of

finding the vector λ ¼ fλl; l ¼ 1 ÷ Lg. However, the next operation
on this vector, given by equation A-15, smooths the oscillations
in the vector λ associated with errors in the input data
ðX;YÞ∈ ðRN·L ×RM·LÞ. We can assume that the errors are concen-
trated in the vector Y, and in fact, this vector is the sum Yδ ¼ Y þ
δðYÞ; kδðYÞk ≤ δ where δ can be defined. The gradients of the iter-
ative processes applied to the solution of these kinds of equations
have regularizing properties. The number of step iterations plays the
role of the regularization parameter (equation A-16) based on the
general principles of the regularization theory (Ivanov et al., 2013)
that the choice of the regularization parameter on the basis of the
residual provides for the regularizing properties of the algorithm.
This means that the principle of stopping the iterative process (equa-
tion A-16) would be the achievement of discrepancy ϕn level,
kϕnk ¼ ½yl − Fðxl; ξnÞ�. Alternatively, other rules can be used to
choose an optimal regularization parameter in the absence of infor-
mation about the level of residual δ. Thus, the stop role can be, for
example, the principle of quasi-optimality based on the control of
Δnþ1 ¼ kξnþ1 − ξnk and stopping the iterative process (A-13) on
the principle of achieving a minimum value of Δnþ1∕n.
Under the current equivalence, and probably a wider approximate

called practical or quasi-equivalence, many local minima exist in
the problem

kFðX; ξÞ − YkRM·L → min;

ξ ∈ Rk: (A-19)

The iterative process (equation A-13) converges to a local mini-
mum of iterative process (equation A-16), the properties of which
are controlled by two parameters: the choice of the zero approxi-
mation ξ0, and the matrix ½J�J�−1 determining the direction of
the iteration process to a local minimum. If this is a unit operator,
the direction of movement is determined by the gradient of the
residual functional (equation A-19). However, wide opportunities
arise if to vary this matrix while relying on the assumptions of
the correlation proximity ξ0 and a local minimum in equation A-
19. Nevertheless, Himmelblau (1972) gives a sufficiently high num-
ber of heuristics algorithms in which a gradient (equation A-19) is
replaced by its approximate, sufficiently generalized, approxima-
tion calculated so as to exclude in the area of local minima and
to move toward a trend.
Let us suppose that in a neighborhood of ξn, a pair of vectors

ξn1; ξ
n
2 is selected. This pair can be, for example, a pair of iterative

two-step processes to minimize gradient (equation A-19) during the
genetic algorithm. The system matrix matrices can be calculated for
this pair as follows: Ψ ðxl; ξnÞ ¼ Fðxl; ξn2Þ − Fðxl; ξn1Þ∕ξn2 − ξn1 and
the iterative process (equation A-16) is modified as

ξnþ1 ¼ ξn þ αn½J�J�−1½Ψ ðxl; ξnÞ��½yl − Fðxl; ξnÞ�: (A-20)
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